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In strict programming languages, parameters of functions are evaluated before these functions are invoked. In

lazy programming languages, the evaluation happens after invocation, if the formal parameters are effectively

used. Languages are strict or lazy by default, sometimes providing developers with constructs to modify

this expected evaluation semantics. In this case, it is up to the programmer to decide when to use either

approach. This paper moves this task to the compiler by introducing the notion of “lazification" of function
arguments: a code transformation technique that replaces strict with lazy evaluation of parameters whenever

such modification is deemed profitable. This transformation involves a static analysis to identify function

calls that are candidates for lazification, plus a code extraction technique that generates closures to be lazily

activated. Code extraction uses an adaptation of the classic program slicing technique adjusted for the static

single assignment representation. If lazification is guided by profiling information, then it can deliver speedups

even on traditional benchmarks that are heavily optimized. We have implemented lazification onto LLVM 14.0,

and have applied it onto hundreds of C/C++ programs from the LLVM test-suite and from SPEC CPU2017.

During this evaluation, we could observe statistically significant speedups over clang -O3 on some large

programs, including a speedup of 11.1% on Prolang’s Bison and a speedup of 4.6% on SPEC CPU2017’s

perlbench, which has more than 1.7 million LLVM instructions once compiled with clang -O3.

CCS Concepts: • Computer systems organization→ Embedded systems; Redundancy; Robotics; • Net-
works → Network reliability.

Additional Key Words and Phrases: lazy evaluation, programming languages, compilers

1 INTRODUCTION
Several programming languages furnish developers with ways to enable communication with the

compiler. These language constructs—type qualifiers or meta-language annotations—do not describe

what the compiler should implement, but rather how a given piece of code should be implemented.

For instance, GCC has an extensive list of C/C++ extensions
1
, through which developers can guide

the application of code optimizations. LISP provides the declare clause, which is used with similar

purpose [Steele 1990].

Although useful, these constructs tend to become obsolete with the evolution of compilation

technology. For example, the register specifier in C/C++, once used to suggest a variable should

be stored in a CPU register, has been made largely irrelevant by automatic register allocation, to

the point where it is ignored by C compilers in most scenarios
2
. This qualifier was deprecated

in C++11, and is now unused since C++17 [ISO 2011, 2017]. Other examples of C/C++ keywords

whose usefulness has been partially or completely superseded by compiler analyses exist, such

as inline [Ayers et al. 1997; Chang and Hwu 1989; Chang et al. 1992] and restrict [Diarra 2018;
Sperle Campos et al. 2016].

1
https://gcc.gnu.org/onlinedocs/gcc/C-Extensions.html

2
https://gcc.gnu.org/onlinedocs/gcc/Explicit-Register-Variables.html
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Nevertheless, developers still have the upper hand on at least one aspect of code generation:

the evaluation strategy. Most programming languages are strict, meaning that actual parameters

are evaluated before being passed to functions. However, many strict languages provide users

with syntax to instruct the compiler to implement delayed evaluation for specific values. Examples

include C#’s Lazy<T> class [Hejlsberg et al. 2008], Swift’s lazy property [Inc. 2021], D’s lazy
storage class [Alexandrescu 2010] and Idris’s Lazy type qualifier [Brady 2013a,b]. In all these cases,

the onus of reasoning about the safety and profitability of lazy evaluation falls on the programmer.

The Contributions of this Work. In this paper, we argue that compilers can lift such responsibility

from users. To this end, we propose lazification of function arguments, a compiler optimization

which identifies function calls whose actual parameters may benefit from being lazily evaluated,

and transforms the program to carry out such strategy, effectively implementing selective call-

by-need. Our optimization first analyzes the program’s control flow, marking formal parameters
3

which are candidates for lazification. Then, call sites are analyzed to determine the safety and

profitability of lazily evaluating corresponding actual instances of such parameters. For safe calls

deemed profitable, we leverage Program Slicing [Binkley and Gallagher 1996; Tip 1994; Weiser

1984; Xu et al. 2005] to create a delegate function that encapsulates the value’s computation. We

then clone the callee function to create a version of it whose formal parameter is a thunk lazily

evaluated at runtime. This optimization leverages profile information to better guide its profitability

analysis. The aforementioned modus operandi is the materialization of the following contributions:

Lazification: the description of an algorithm that can be applied onto the low-level interme-

diate representation of a compiler to replace call-by-value with call-by-need whenever such

transformation is deemed profitable.

Value Slicing: an adaptation of the classic program slicing algorithm to run on programs

in the static single assignment (SSA) format. This adaptation extracts, from a program, a

closure that computes an SSA value alive at a particular point of that program.

Summary of Results. We have implemented our optimization on top of the LLVM compilation

infrastructure [Lattner and Adve 2004]. Thus, analyses and transformations are performed on

LLVM’s intermediate representation.We evaluated the effectiveness of our prototype onto the C/C++

programs in the LLVM test-suite and the SPEC CPU2017 collection. In total, we run lazification on

772 C/C++ programs optimized with clang -O3. Unguided lazification, i.e., without the support of
profiling data, yields performance regressions onto these heavily optimized codes: a slowdown of

almost 10% on average. However, once profiling data becomes available, the optimization starts

paying off. Average speedups are still low, for they are distributed across many benchmarks:

we could observe a speedup of 1.10% with a confidence interval of 95% when using our most

conservative optimization setup. However, once individual benchmarks are analyzed, we can

perceive some significant performance improvements. In two of the benchmarks of the LLVM test

suite, Prolang’s Bison and city, speedups were above 10%. In SPEC CPU2017’s perlbench, one of
the largest benchmarks we have, the observed speedup was 4.6%. Our optimization increases code:

on its most aggressive mode, i.e., without any profiling cutoff, the average expansion was of 18.9%.

In the most conservative mode, average expansion was of 9.2%.

Software. The ideas in this report are implemented in LLVM 14.0. Our implementation is publicly

available under the GPL 3.0 license at https://github.com/lac-dcc/wyvern.

3
Following typical programming language jargon, we define formal parameters as the name of parameters as declared in

the definition of functions; and we define actual parameters as the expressions passed to functions at their invocation sites.

https://github.com/lac-dcc/wyvern
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2 OVERVIEW
This section motivates the use of lazy evaluation in general purpose programming languages

(Sec. 2.1), and explains how programs can be transformed automatically to support it (Sec. 2.2).

2.1 The Evaluation Zoo
The evaluation strategy of a programming language determines how expressions in the language

should be evaluated to yield their final values. The decision of which strategy to employ is par-

ticularly relevant in the context of procedure calls. When expressions are passed as arguments to

procedures, this strategy dictates when and how they should be evaluated. While several evaluation

strategies exist, this paper concerns three particular strategies:

Definition 2.1 (Evaluation strategies). Given a caller function 𝑓 : 𝑆 ↦→ 𝑇 and a callee function

𝑔 : 𝑅 ↦→ 𝑆 , the evaluation strategy determines when 𝑔(𝑟 ), 𝑟 ∈ 𝑅 is resolved once the invocation

𝑓 (𝑔(𝑟 )) happens in an environment 𝐸 that binds variable names to values. This paper concerns the

three strategies below. We assume that 𝑔(𝑟 ) = 𝑠, 𝑠 ∈ 𝑆 .

• Call-by-value: the evaluation of 𝑓 (𝑔(𝑟 )) is performed by first evaluating 𝑔(𝑟 ) in 𝐸 to yield

𝑠 , then computing 𝑓 (𝑠) in environment 𝐸. Call-by-value is also called strict evaluation.
• Call-by-name: the evaluation of 𝑓 (𝑔(𝑟 )) is performed by passing to 𝑓 a closure (_𝑥 .𝑔(𝑥), 𝐸),
containing a reference to 𝑔 and the environment 𝐸. The evaluation of 𝑔(𝑟 ) is performed at

every program point in 𝑓 where the value of 𝑔(𝑟 ), e.g., 𝑠 , is used. Call-by-name is a form of

non-strict evaluation.
• Call-by-need: the evaluation of 𝑓 (𝑔(𝑟 )) proceeds by passing to 𝑓 a closure (_𝑥 .𝑔(𝑥), 𝐸, 𝑀),
where 𝑀 : 𝑅 ↦→ 𝑆 is a table that maps arguments 𝑟 ′ ∈ 𝑅 to values 𝑠 ′ ∈ 𝑆 . The evaluation

of 𝑔(𝑟 ) is performed at every program point in 𝑓 where 𝑔(𝑟 ) is used. The first time 𝑔(𝑟 ) is
evaluated, the value 𝑠 of 𝑔(𝑟 ) is computed and stored in 𝑀 . In subsequent evaluations of

𝑔(𝑟 ), the pre-computed𝑀 (𝑟 ) is returned. Call-by-need is a form of non-strict evaluation.

Programming languages that employ call-by-value semantics are referred to as strict. Most

programming languages are strict. Notable examples of non-strict languages are Haskell [Hudak

et al. 2007], R [Chambers 2020] and Miranda [Turner 1986]. Several reasons explain why strict

evaluation is more popular. One is the cost of implementing non-strict evaluation. The closures

mentioned in Definition 2.1 are commonly known as thunks. The creation and initialization of

thunks incur a cost in terms of both time and memory. In fact, early compilers for non-strict

languages would apply strictness analysis to implement strict evaluation where possible [Clack

and Peyton Jones 1985; Mycroft 1981]. Such pattern is still employed nowadays
4
. A second reason

is the unintuitive nature of non-strict evaluation in the presence of side effects, as discussed by

Stadler et al. [2016] in the context of the R programming language. ALGOL60, for instance, was the

first language to introduce call-by-name semantics [Backus et al. 1960]. However, call-by-name led

to confusing behavior, as famously evidenced by Jensen’s device [MacLennan 1986]. Call-by-name

would later be discarded in ALGOL68 in favor of call-by-value [Van Wijngaarden et al. 1969].

Finally, strict evaluation leads to more predictable program behavior. In this regard, the Idris

tutorial contains an illustrative discussion, which we quote: “[Given a type thing: Int], what is
the representation of thing at run-time? Is it a bit pattern representing an integer, or is it a pointer to
some code which will compute an integer?"5 As a consequence, several features that are common

in strict languages lack equivalents in the non-strict world. As an example, until very recently,

semantic subtyping systems were unsound for non-strict semantics [Petrucciani et al. 2018].

4
See Haskell’s strictness analysis at https://wiki.haskell.org/Performance/Strictness.

5
Discussion available at https://docs.idris-lang.org/en/v0.9.18.1/faq/faq.html

https://wiki.haskell.org/Performance/Strictness
https://docs.idris-lang.org/en/v0.9.18.1/faq/faq.html
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Strict evaluation is not, however, inherently superior to its non-strict counterpart. In particular

scenarios, the deferred nature of non-strict evaluation can provide significant performance bene-

fits, by avoiding unnecessary computations. In fact many strict programming languages provide

programmers with means to implement selective non-strict evaluation, as Example 2.2 illustrates.

void dotimes(int count, (lazy) void exp)
{
    for (int i = 0; i < count; i++) 
    exp();
}

void foo()
{
    int x = 0;  
    dotimes(10, write(x++));
}

class DataImporter {
   var filename = "data.txt"
}

class DataManager {
    lazy var importer = DataImporter()
    var data: [String] = []
}

let manager = DataManager()
manager.data.append("Some data")
manager.data.append("Some more data") 
print(manager.importer.filename)

01
02
03
04
05
06
07
08
09
10
11
12
13

01
02
03
04
05
06
07
08
09
10
11

(a)
(b)

Fig. 1. Examples of lazy evaluation in strict languages. (a) An example of the lazy storage class in D, taken
directly from the language’s documentation (https://dlang.org/articles/lazy-evaluation.html). (b) An example
of Swift’s lazy stored properties, also taken from the language’s documentation (https://docs.swift.org/swift-
book/LanguageGuide/Properties.html).

Example 2.2. Figure 1 (a) shows an example used in D’s documentation of its lazy storage class.

The expression exp received in line 1 is declared as lazy. It is only evaluated in line 4, when it is

needed. Thus, the expression write(x++) in line 10 is computed lazily, rather than being computed

at the time function dotimes is called.

Lazy evaluation is also common in the initialization of data. In this case, it provides programmers

with a built-in implementation of the proxy design pattern. Thus, instead of initializing large objects

that might not necessarily be used later on, initialization happens on demand, that is, only when

needed. Example 2.3 illustrates this pattern in the Swift programming language.

Example 2.3. Figure 1 (b) Shows a program taken from Swift’s documentation of its lazy modifier

for stored properties. Class DataManager in line 5 contains a property of class DataImporter,
bound to member variable importer. However, this property is declared as lazy, implying the

property is only initialized when needed. Therefore, the creation of a DataManager in line 10

does not trigger the initialization of its importer property. This initialization is deferred to line 13,

when it is first referenced.

2.2 Lazification by Examples
Examples 2.2 and 2.3 show situations where it is up to the programmer to recognize profitable

opportunities where lazy evaluation might be safely applicable. The optimization described in this

paper moves this task to the compiler. In other words, we describe a compiler optimization that (i)

automatically identifies opportunities for lazy evaluation, and (ii) transforms the code to capitalize

on such opportunities. To demonstrate its workings, we shall use Example 2.4, which shows a

situation where the optimization proposed in this paper delivers a large benefit.

Example 2.4. The logical conjunction (&&) at Line 02 in Figure 2 (a) implements short-circuit
semantics: if it is possible to resolve the logical expression by evaluating only the first term (key

https://dlang.org/articles/lazy-evaluation.html
https://docs.swift.org/swift-book/LanguageGuide/Properties.html
https://docs.swift.org/swift-book/LanguageGuide/Properties.html
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!= 0), then the second term is not evaluated. Nevertheless, the symbols used in the conjunction,

namely key and value, are fully evaluated before function callee is invoked at Line 15 of Figure 2
(a). This fact is unfortunate, because the computation of the second variable, value, involves a
potentially heavy load of computation, comprising the code from Line 09 to Line 14 of Figure 2 (a).

// The table of free
// variables that forms
// the closure.
// Support to one-shot
// memoization.

void callee(int key, int value, int N) {
  if (key != 0 && value < N) {
    printf("User has access\n");
  }
}

void caller(char *s0, int *keys, int N) {
  int key = atoi(s0);
  int value = -1;
  for (int i = 0; i < N; i++) {
    if (keys[i] == key) {
      value = i;
    }
  }
  callee(key, value, N);
}

void callee(int key, struct thunk *thk, int N) {
  if (key != 0 && thk->fptr(thk) < N) {
    printf("User has access\n");
  }
}

void caller(char *s0, int *keys, int N) {
  int key = atoi(s0);
  struct thunk value_thunk;
  value_thunk.fptr = &slice_callee_value;
  value_thunk.memo = false;
  value_thunk.s0 = s0;
  value_thunk.keys = keys;
  value_thunk.N = N;
  callee(key, &value_thunk, N);
}

int slice_callee_value(struct thunk *thk) {
  if (thk->memo) {
    return thk->val;
  }
  int key = atoi(thk->s0);
  int value = -1;
  for (int i = 0; i < thk->N; i++) {
    if (thk->keys[i] == key) {
      value = i;
    }
  }
  thk->val = value;
  thk->memo = true;
  return value;
}

09
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(a) Original Program

(b) Optimized Program
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struct thunk {
  int (*fptr)(struct thunk *);
  char *s0;
  int *keys;
  int N;
  int val;
  bool memo;
};

Fig. 2. (a) Example of a program that benefits from the lazy evaluation of parameter value, once function
callee is invoked at Line 15. (b) Lazified version of the program. Gray boxes highlight the interventions
proposed in this paper. These interventions are implemented at the level of the LLVM intermediate represen-
tation; however, their effects are shown as C code for the sake of readability.

The computation of value in Figure 2 (a), as discussed in Example 2.4, is a promising candidate

for lazification. Figure 2 (b) shows the code that results from this optimization, as proposed in this

paper
6
. Lazification, as engineered in this paper, is implemented as a form of function outlining:

part of the program code is extracted into a separate function–a closure—which can be invoked

as needed. This thunk appears in Lines 01-08 of Figure 2 (b). The thunk is a triple formed by a

table that binds values to free variables (Lines 03–05); a single-value cache (Lines 06 and 07) and a

pointer to a function (Line 02). This function implements the computation to be performed lazily.

This function appears in lines 26 to 40 of Figure 2 (b). An invocation to this closure in Line 10

of Figure 2 (b) replaces the use of formal parameter value, which was computed eagerly in the

6
For the sake of presentation only, we shall illustrate the effects of lazification using high-level C code. However, the

prototype that we shall evaluate in Section 4 has been implemented onto LLVM, and affects exclusively the intermediate

representation of this compiler.
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original program. There is no upper limit to the amount of speedup that can be achieved by this

style of low-level function lazification. Example 2.5 illustrates this aspect of our approach.

Example 2.5. If the test key != 0 is often false in Line 02 of Figure 2 (a), then lazy evaluation

becomes attractive. In this case, the speedup that lazification delivers onto the program in Figure 2

(a) is linearly proportional to N. For instance, on a single-core x86 machine clocked at 2.2GHz, using

a table with one million entries (N = 10
6
), and ten thousand input strings, the original program runs

in 4.690s, whereas its lazy version in Figure 2 (b) runs in 0.060s. This difference increases with N.

The profitability of lazification depends on the program’s dynamic behavior. If a function argu-

ment is rarely used, then it pays off to pass this argument as call-by-need. Otherwise, lazification

leads to performance degradation. Regressions happen not only due to the cost of invoking the

closure, but also to the fact that function outlining decreases the compiler’s ability to carry out

context-sensitive optimizations. Thus, to make lazification practical, we have made it profile-guided,

as we explain in Section 3.5. Nevertheless, our current implementation of lazification is able to

transform the program in Figure 2 (a) into the program in Figure 2 (b) in a completely automatic

way: it requires no annotations or otherwise any other intervention from users.

3 THE IMPLEMENTATION OF LAZIFICATION
This section describes our implementation of the techniques proposed in this paper to replace eager

with lazy evaluation of function arguments. Figure 3 provides a unified view of the different steps

that constitute the optimization that this paper advocates. That figure will guide our presentation.

Instrument call sites 
and use sites of 

formal parameters

Generate 
profiling 

data

Assess 
profitability

Find promising functions 
(there is a path from entry 

to exit that does not go 
through an argument use)

Collect call sites of 
promising functions

Determine slice 
of candidate 
expression

Safety analysis 
(determine if slice 

is idempotent)

Extract program 
slice into 

delegate thunk

Clone generation: replace 
declaration of lazy parameter with 

thunk, and replace uses of lazy 
parameter with calls to the thunk

Generate code to initialize 
thunk before invocation of 

lazified function

Optional: Profiling-guided profitability analysis (Section 3.5)

Applicability (Section 3.2) Program slicing (Section 3.3)

Code generation (Section 3.4)

Fig. 3. Overview of the different steps that constitute our implementation of lazification of function arguments.

3.1 The Underlying Language
Our presentation, in this section, uses a low-level language, formed by programs in Static Single

Assignment (SSA) form [Cytron et al. 1989]. These programs are represented as control-flow graphs
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(CFG). Nodes in a CFG represent basic blocks: maximal sequences of instructions that execute

in succession regardless of the program flow. CFG edges represent program flows determined

by terminators. Terminators are instructions that end basic blocks: unconditional branches (with

one successor); conditional branches (with two successors); and switches (with three or more

successors). CFGs contain two special nodes: 𝑏𝑠𝑡𝑎𝑟𝑡 and 𝑏𝑒𝑛𝑑 . The former has zero predecessors; the

latter, zero successors. If 𝐺 = (𝑉 , 𝐸) is a control-flow graph, then every node 𝑏 ∈ 𝑉 ,𝑏 ≠ 𝑏𝑠𝑡𝑎𝑟𝑡 can

be reached from 𝑏𝑠𝑡𝑎𝑟𝑡 . Similarly, every node 𝑏 ∈ 𝑉 ,𝑏 ≠ 𝑏𝑒𝑛𝑑 reaches 𝑏𝑒𝑛𝑑 . Conditional branches

are controlled by boolean predicates; switches are controlled by integer predicates. Given that we

are assuming the SSA representation, programs might contain phi-functions at the beginning of

basic blocks. An instruction such as 𝑥 = phi(𝑥1, 𝑥2) at the beginning of a block 𝑏 will copy either

𝑥1 or 𝑥2 into 𝑥 , depending on the path through which 𝑏 has been reached.

Example 3.1. Figure 4 (a) shows a program, whose control-flow graph appears in Figure 4 (b).

Similarly, Figure 4 (c) shows the CFG of the program seen in Figure 4 (d).

int foo(
  int a,
  int b,
  int c,
  int p0,
  int p1,
  int n0
) {
  int r = 0;
  int x = a;
  if (p0) {
    x = a * b;
    r = r + 1;
  }
  x += c;
  switch (n0) {
    case 1:
      if (p1) {
        r = bar(x);
      }
      break;
    case 2:
      r = 7;
      break;
    case 3:
      r = 13;
      break;
    default:
      r = 17;
      break;
  }
  return r;
}

bstart:
tobool = icmp-ne p0, 0
br tobool, if.end, if.then

if.then:
mul = mul a, b
r.1 = r + 1
br if.end

if.end:
x.0 = phi (mul, a), tobool
r.2 = phi (r.1, 0), tobool
add = add x.0, c
switch n0, [sw.default, sw.bb, sw.bb4, sw.bb5]

sw.bb:
tobool1 = icmp-ne p1, 0
br tobool1, if.end3, if.then2

if.then2:
r.3 = call @bar(add)
br if.end3

if.end3:
r.0 = phi (r.3, r.2), tobool1
br bend

sw.bb4:
br bend

sw.bb5:
br bend

sw.default:
br bend

bend:
r.1 = phi (17, 13, 7, r.0), n0
ret r.1

bstart:
tobool = icmp-ne p0, 0
br tobool, if.end, if.then

if.then:
mul = mul a, b
br if.end

if.end:
x.0 = phi (mul, a), tobool
add = add x.0, c
br bend

01

02
03
04
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bend:
ret add

int slice(int a, int b, int p0) {
  int x = a;
  if (p0) {
    x = a * b;
  }
  x += c;
  return x;
}

01
02
03
04
05
06
07
08

(a) Original program (b) CFG of original program (c) Slice of the CFG

(d) Thunk produced from the 
slice seen in part (c)

Fig. 4. Example of program slice, as extracted by the algorithm described in Section 3.3 of this paper. The
gray boxes in part (b) highlight the predicates used to gate phi-functions, as explained in Section 3.3.1.
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3.2 Identification of Applicability
In this paper, lazification is implemented per call site. In other words, given a caller function

𝑔(. . .), a callee function 𝑓 (. . . , 𝑎, . . .), and an invocation site of 𝑓 , at some program point 𝑝 :

𝑓 (. . . , exp, . . .), 𝑝 ∈ 𝑔, lazification will lead to four automatic interventions in the code:

(1) An outlined delegate function 𝑑𝑒𝑥𝑝 (thunk𝑒𝑥𝑝 ), corresponding to a backward slice of exp,
will be synthesized and inserted into the target program.

(2) A clone 𝑓𝑝 (. . . , thunk𝑒𝑥𝑝 , . . .) of 𝑓 will be produced and incorporated into the set of function

definitions of the target program.

(3) The invocation of 𝑓 at 𝑝 will be replaced with an invocation to 𝑓𝑝 , with thunk𝑒𝑥𝑝 initialized

with the free variables in exp.
(4) Each use of exp in 𝑔 is replaced by a call to 𝑑𝑒𝑥𝑝 .

Lazification is only profitable if some invocations of 𝑓 might not use all its formal parameters.

The problem of determining if such is the case statically would be undecidable, as a consequence

of Rice [1953]’s Theorem. Therefore, to determine the applicability of lazification, we adopt a

conservative estimate of this property. This analysis identifies the so called promising functions,
which are defined as follows:

Definition 3.2 (Promising Function). Given a function 𝑓 , plus 𝑎, one of its formal arguments,

function 𝑓 is promising in regard to 𝑎 if its CFG contains a path from 𝑏𝑠𝑡𝑎𝑟𝑡 to 𝑏𝑒𝑛𝑑 that does not

traverse any point where 𝑎 is used.

Example 3.3. Function callee in Figure 2 (a) is promising in regards to value. There exists a
path from the function’s entry point to the function’s end point that does not go across the use

of formal parameter value. Such path is created by the short-circuit semantics of the operator &&.
Function foo in Figure 4 (a) is not promising regarding any of its formal parameters, except b and

p1. Regarding the latter, the CFG of foo contains a use of p1 in block sw.bb. Every path from 𝑏𝑠𝑡𝑎𝑟𝑡
to 𝑏𝑒𝑛𝑑 that dodges block sw.bb is a promising path in regard to parameter p1.

Depth-First Search. Whether a function is promising can be computed by a depth-first-search

through its CFG. Start a traversal by visiting its initial 𝑏𝑠𝑡𝑎𝑟𝑡 node. Visit each successor 𝑏𝑖 recursively,

interrupting the search if 𝑏𝑖 contains a use of parameter 𝑎. If the search eventually reaches 𝑏𝑒𝑛𝑑 , then

a viable path exists and the function is promising. Otherwise, if all eligible nodes have been visited

and 𝑏𝑒𝑛𝑑 is not reachable, then the function is discarded as an optimization candidate. Nevertheless,

while Definition 3.2 aids in identifying which functions are candidates for lazification, it is innately

conservative. There is no guarantee that the promising paths found by the DFS are exercised during

program execution. Therefore, the DFS is effective in pinpointing occasions where lazification is

applicable, but it is less reliable when it comes to evaluating whether such application is profitable.
Section 3.5 explains how profitability can be estimated through profiling.

3.3 Slicing
To implement lazy evaluation of a function 𝑓 ’s formal parameter, we replace this formal parameter,

in the definition of 𝑓 , with a thunk. The thunk contains a delegate function, computed as the

backward slice of some actual parameter in a invocation of 𝑓 . Definition 3.4 revisits the notion of

backward slice, adapting to our context the formalization proposed by Weiser [1984] in the early

eighties.

Definition 3.4 (Backward Slice). Given a program 𝑃 , plus a variable 𝑣 defined at a program point

𝑝 ∈ 𝑃 , the backward slice of 𝑣 at 𝑝 is a subset 𝑃𝑠 of 𝑃 ’s program points containing 𝑝 , such that if 𝑃

computes 𝑣 with value 𝑛, given input 𝐼 , then 𝑃 ′
computes 𝑣 with value 𝑛, given input 𝐼 . We call the

pair (𝑣, 𝑝) a Slice Criterion.
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Notice that an adaptation of Weiser’s concept of program slice is in order, because he assumed an

imperative setting, where a slice criterion would be a program statement. However, in our context,

we need a variable, e.g., a program symbol, as a slice criterion, for we are interested in the contents

of this variable, once it is used as the actual argument of a function call. Example 3.5 illustrates our

notion of backward slice and Section 5 provides further discussion on these differences.

Example 3.5. Figure 4 (a) shows a program written in C. We let the use of variable x at Line 12 be

a slice criterion. The backward slice that computes this slice criterion, e.g., (x, Line 12), appears in
Figure 4 (a) in boldface. Figure 4 (d) shows the delegate function derived from this backward slice.

3.3.1 Gating Phi-Functions. The computation of a backward slice, given criterion (𝑣, ℓ) involves
finding the set of program dependencies that compute 𝑣 at line ℓ . Following the classic definition

of Ferrante et al. [1987], we recognize two types of dependencies: data and control, concepts that
Definition 3.6 revisits. Like Definition 3.4, Definition 3.6 adapts the early notion of dependency

stated by Ferrante et al. [1987]. However, whereas in that setting Ferrante et al. were interested in

program statements, we care for dependencies between program symbols:

Definition 3.6 (Dependencies). A variable 𝑢 is data dependent on a variable 𝑣 if 𝑢 is defined by

an instruction that uses 𝑣 . A variable 𝑢 is control dependent on a variable 𝑣 if the assignment of 𝑢

depends on a terminator controlled by 𝑣 . A variable 𝑢 depends on a variable 𝑣 if it is either data or

control dependent on 𝑣 , or if it depends on a variable𝑤 that depends on 𝑣 .

Definition 3.6 gives us a trivial algorithm to compute data dependencies: for each instruction

“𝑢 = . . . , 𝑣, . . .", we make 𝑢 data dependent on 𝑣 . To compute control dependencies, we resort

to an old approach adopted in the context of SSA-form programs: gating [Tu and Padua 1995].

Gating consists in appending, as a special notation, predicates to certain phi-functions. As seen in

Section 3.1, predicate is a variable that controls a branch or a switch. Definition 3.7 provides an

algorithmic denotation of gates, which Example 3.8 illustrates.

Definition 3.7 (Gates). Given a control-flow graph 𝐺 = (𝑉 , 𝐸), and two vertices 𝑏0 ∈ 𝑉 and

𝑏1 ∈ 𝐺 , we say that 𝑏1 post-dominates 𝑏0 if every path from 𝑏0 to 𝑏𝑒𝑛𝑑 goes through 𝑏1. We say

that 𝑏1 is the immediate post-dominator of 𝑏0 if 𝑏1 post-dominates 𝑏0, and for any other node 𝑏𝑝
that post-dominates 𝑏0, either 𝑏𝑝 = 𝑏1, or 𝑏𝑝 post-dominates 𝑏1. Given a predicate 𝑝 that controls

a terminator at basic block 𝑏0, we say that 𝑝 gates every phi-function in the basic block 𝑏1 that

immediately post-dominates 𝑏0.

Example 3.8. The boolean predicate tobool in Figure 4 (b) gates the two phi-functions at the

beginning of basic block if.end. The integer predicate n0 gates the phi-function at the beginning

of basic block sw.epilog. Gates appear in gray boxes in Figure 4 (b).

Gating transforms control dependencies into data dependencies, because the gates add to the

right side of phi-functions—as a special notation—the predicates that control those assignments.

Notice that Definition 3.7 leads to a simplified version of the so called Gated Static Single Assignment
representation [Ottenstein et al. 1990]. The only difference between gating, as implied by Defini-

tion 3.7 and gating as defined by Ottenstein et al. concerns what Ottenstein et al. calls [-functions:

special copy instructions that split variables defined within a loop and used outside it. In our

context, such form of live range splitting does not occur.

3.3.2 Identification of Slice Boundaries. The algorithm that we use in this paper to produce program

slices contains two boundary conditions and three nullifying conditions. The nullifying condition
prevents a slice from being created. The boundary conditions, in turn, stop the backward propagation

of dependencies when computing slices. We adopt the following boundary conditions:
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Loops: If the slice criterion (𝑣, ℓ) is such that ℓ exists inside a loop, then the slice cannot

contain variables that vary with the loop.

Functions: If 𝑓 is the function that contains the slice criterion (𝑣, ℓ), then the slice will contain
only variables defined within 𝑓 .

Loop Boundary. The first of these criteria, Loops, is necessary for correctness: the delegate

function created out of a slice must be invariant in the context where it is called. In other words,

the values used in the computation of this function cannot vary with the loop that encloses the

caller that will receive the thunk containing it. In terms of implementation, the Loop boundary

condition implies that arguments of phi-functions in loop headers are not considered as part of the

backward slice. Example 3.9 illustrates this observation.

Example 3.9. Figure 5 (a) shows a program, and the backward slice that refers to the criterion (x,
Line 08). The instructions that make up this slice are highlighted in Figure 5 (b). Figure 5 (c) shows

the corresponding delegate function, in high-level C. Notice that this backward slice contains a

loop; however, once its thunk is evaluated, this loop has been fully resolved. On the other hand,

if the criterion lays inside the loop, then it will be constrained by the loop boundaries. Figure 5

(d) shows the same program, this time with the criterion inside the loop (Line 07). Because a slice

must be invariant, it comprises only values defined in a single iteration of the loop. Notice that it

can still depend on loop-invariant values, such as c. However, it cannot depend on add or a, the
arguments of the phi-function in block while.cond of Fig. 5 (e). This boundary condition exists

because the value of x.0, the variable computed by that phi-function, is loop variant.

int foo(int a, int b, int c) {
  int x = a;
  int sum = 0;
  while (x < b) {
    x += c*c;
    sum += x;
  }
  bar(x);
  return sum;
}

int slice(int a, int b, int c) {
  int x = a;
  while (x < b) {
    x += c*c;
  }
  return x;
}

01
02
03
04
05
06
07
08
09
10

01
02
03
04
05
06
07

bstart:
br while.cond

while.cond:
x.0 = phi (a, add), cmp
sum.0 = phi 0, add1
cmp = icmp-slt x.0, b
br cmp, bend, while.body

while.body:
mul = mul c, c
add = add x.0, mul
add1 = add sum.0, add
br while.cond

bend:
call @bar(x.0)
ret sum.0

int foo(int a, int b, int c) {
  int x = a;
  int sum = 0;
  while (x < b) {
    x += c*c;
    sum += x;
    bar(x);
  }
  return sum;
}

int slice(int x, int c) {
  x += c*c;
  return x;
}

01
02
03
04
05
06
07
08
09
10

01
02
03
04

bstart:
br while.cond

while.cond:
x.0 = phi (a, add), cmp
sum.0 = phi 0, add1
cmp = icmp-slt x.0, b
br cmp, bend, while.bodywhile.body:

mul = mul c, c
add = add x.0, mul
add1 = add sum.0, add
call @bar(x.0)
br while.cond

bend:
ret sum.0

(a) Slice criterion outside loop (b) Control-flow graph (c) Sliced program

(d) Slice criterion inside loop (e) Control-flow graph (f) Sliced program

Fig. 5. (a-c) Example of program slice whose criterion lays outside a loop. (d-f) Same example, this time with
slice criterion inside a loop.
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Function Boundary. Although the optimization proposed in this paper is inter-procedural, our

slices do not propagate backwardly from callee into caller functions. This restriction is not a

fundamental limitation of our approach. As we shall see in Section 5, there exists a whole body of

literature on inter-procedural code motion that would already give us the theoretical equipment to

extend slices past function definitions. However, we opted to restrict slices to within the scope of

functions for simplicity. Notice that slices can still contain function calls—what is forbidden is to

contain dependencies that go past the formal parameters of the function that contains the slice

criterion. Example 3.10 shows an actual slice that we produce, containing a function invocation.

__attribute__((pure))
bool is_num(char *str, int N) {
  for (int i = 0; i < N; i++) {
    if (str[i] < '0' || str[i] > '9') {
      return false;
    }
  }
  return true;
}

int caller(char *s0, char *s1, int N) {
  bool is_num0 = is_num(s0, N);
  bool is_num1 = is_num(s1, N);
  return target(s0, s1, is_num0, is_num1, N);
}

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15

bool slice_target_is_num1(struct thunk *thk) {
    if (thk->memo)
        return *(thk->value);
    bool ret = is_num(thk->s1, thk->N);
    return ret;
}

int caller(char *s0, char *s1, int N) {
  bool is_num0 = is_num(s0, N);
  struct thunk is_num1_thk;
  is_num1_thk.fun_ptr = &slice_target_is_num1;
  is_num1_thk.memo = false;
  is_num1_thk.s1 = s1;
  is_num1_thk.N = N;
  return target(s0, s1, is_num0, &is_num1_thk, N);
}

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16

(a) Original Program (b) Optimized Program

Fig. 6. (a) Original program, whose slice criterion is (is_num1, Line 14). (b) The thunk formed from the
backward slice, which includes the call to function is_num() at Line 13 of part (a).

Example 3.10. Figure 6 shows an example of a slice that includes a function invocation: the call

to function is_num(), at Line 13 of Figure 6 (a). However, although the backward propagation of

dependencies can enter function calls, it cannot move past the formal parameters of the enclosing

function. Therefore, these dependencies include, as stop conditions, the arguments s0, s1 and N of

function caller, where the slice criterion is defined. In other words, the dependency graph that

forms the slice is rooted at these nodes.

Nullifying Conditions. In this paper we consider only slices that are idempotent, that is, that
do not cause side effects. To implement this restriction, in practice, we consider as invalid slices

containing the following two pieces of code:

(1) Instructions that store into memory.

(2) Invocations of library functions (functions without bodies)
7
.

(3) Instructions that may trigger exceptions, in languages that support them.

Notice that slices can still contain read-only memory accesses, i.e., load instructions
8
. Never-

theless, store operations are forbidden. This restriction, coupled with the interdiction of library

7
An exception is made for standard library functions which are known to be free of side-effects

8
Loading from pointers are allowed as long as these pointers are tagged as “read-only". We use a conservative analysis to

determine read-only pointers: a pointer 𝑝 is read-only if no alias of 𝑝 (as determined by the combination of LLVM’s basic-aa,
tbaa and globals-aa) is the base pointer of a store operation anywhere in the program module, except immediately after

the pointer is allocated. This analysis is performed for every function in a module, but it is flow insensitive.
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functions, effectively prevent the existence of slices containing side effects
9
. We avoid side effects

for two reasons. First, because lazification reorders program actions. Thus, it could modify the

semantics of the program by altering the execution order of operations that change state. Second,

because we implement memoization, as explained in Section 3.4.2. Therefore, in the presence of

side effects, state would change only once, and not multiple times, as originally intended.

3.4 Code Generation
3.4.1 Extraction via Outlining. Once a slice of a program 𝑃 is composed, we use it to generate a

new program 𝑃𝑠 that computes the same slice criterion. 𝑃𝑠 contains a subset of the basic blocks

in 𝑃 . Program 𝑃𝑠 might contain some of the control-flow edges present in 𝑃 ; however, it can also

contain edges that did not exist in the original program. To explain how we build the control-flow

graph of 𝑃𝑠 , we define the notion of the 𝑛𝑡ℎ dominator of a basic block.

Definition 3.11 (Order of Dominance). Given a control-flow graph 𝐺 = (𝑉 , 𝐸), and two vertices

𝑏0 ∈ 𝑉 and 𝑏1 ∈ 𝐺 , we say that 𝑏0 dominates 𝑏1 if every path from 𝑏𝑠𝑡𝑎𝑟𝑡 to 𝑏1 goes through 𝑏0. We

say that 𝑏0 is the immediate dominator of 𝑏1 if 𝑏0 dominates 𝑏1, and for any other node 𝑏𝑑 that

dominates 𝑏1, either 𝑏𝑑 = 𝑏0, or 𝑏𝑑 dominates 𝑏0. Immediate dominance forms an antisymmetric

relation whose shape is a directed tree: the Dominance Tree. Node 𝑏𝑛 is the 𝑛𝑡ℎ dominator of node

𝑏 if 𝑏𝑛 dominates 𝑏, and the path from 𝑏𝑛 to 𝑏 on the dominance tree contains 𝑛 nodes. Given a

set of nodes 𝐵, and a basic block 𝑏 ∉ 𝐵, the first dominator of 𝑏 is 𝑏𝑛 ∈ 𝐵 such that 𝑏𝑛 is the 𝑛𝑡ℎ

dominator of 𝑏, and for any other node 𝑏𝑚 ∈ 𝐵 that is the𝑚𝑡ℎ
dominator of 𝑏, we have that 𝑛 < 𝑚.

The first dominator of a node is not necessarily its immediate dominator: given two nodes, 𝑏1
and 𝑏2 that dominate 𝑏, one of them will be the first dominator, even though none of them might

be 𝑏’s immediate dominator. We use Definition 3.11 to formalize the notion of a sliced program.

Definition 3.12 (Sliced Program). Let a program 𝑃 be represented by a CFG (𝑉𝑝 , 𝐸𝑝 ). And let

𝑉𝑠 ⊆ 𝑉𝑝 be the set of basic blocks from 𝑃 that belong into a backward slice created after some slice

criterion. From 𝑉𝑠 we derive a new program 𝑃𝑠 = (𝑉𝑠 , 𝐸𝑠 ∪ {𝑏𝑠𝑡𝑎𝑟𝑡 , 𝑏𝑒𝑛𝑑 }), where 𝐸𝑠 is defined as

follows:

(1) If 𝑏0 → 𝑏1 ∈ 𝐸𝑝 for some 𝑏0 ∈ 𝑉𝑠 and 𝑏1 ∈ 𝑉𝑠 , then 𝑏0 → 𝑏1 ∈ 𝐸𝑠 .

(2) If 𝑏0 → 𝑏1 ∈ 𝐸𝑝 for some 𝑏0 ∉ 𝑉𝑠 and 𝑏1 ∈ 𝑉𝑠 , and 𝑏1 contains a use of a variable 𝑣 that is

not defined in 𝑏1, then 𝑏 𝑓 → 𝑏1 ∈ 𝐸𝑠 , where 𝑏 𝑓 is the first dominator of 𝑏1 in 𝑉𝑠 \ 𝑏.
(3) If a block 𝑏 ∈ 𝑉𝑠 contains a definition of every variable used in it, then 𝐸𝑠 contains an edge

𝑏𝑠𝑡𝑎𝑟𝑡 → 𝑏.

(4) If 𝑏 contains the slice criterion, then 𝐸𝑠 contains the edge 𝑏 → 𝑏𝑒𝑛𝑑 .

The essential property of a SSA-form program is that every definition of a variable dominates all

its uses. Any sliced program 𝑃𝑠 satisfies this property, as long as the original program 𝑃 is strict.
Strictness means that variables cannot be used without being defined. Budimlic et al. [2002] have

demonstrated the essential SSA property for strict programs in general. We use Budimlic et al.’s

observation to state Theorem 3.13.

Theorem 3.13. Let 𝑃𝑠 = (𝑉𝑠 , 𝐸𝑠 ) be the sliced program derived from a strict SSA-form program
𝑃 = (𝑉𝑝 , 𝐸𝑝 ). For any basic block 𝑏 ∈ 𝑉𝑠 that contains an instruction that uses a variable 𝑣 , we have
that either 𝑏 contains a definition of 𝑣 , or 𝑉𝑠 contains a node that dominates 𝑏.
9
There is another, more subtle cause of side effects: infinite loops. Since our slices may contain loops, they could alter the

semantics of the program by changing when an infinite loop executes. However, since we are concerned with optimizing

C/C++ specifically, these languages allow loops free from side-effects with non-constant conditions to be assumed to

terminate (See C11 6.8.5/6 and C++17 6.8.2.2/1)



Lazy Evaluation for the Lazy 13

Let ℓ : 𝑢 = use(𝑣) be any instruction in 𝑏 that uses a variable 𝑣 . The definition of 𝑣 , in

the original program 𝑃 , is either in 𝑏, or in a block 𝑏𝑑 that dominates 𝑏. In the latter case,

𝑏𝑑 ∈ 𝑉𝑠 , by the definition of backward slice.

Example 3.14. Figure 7 shows four examples of sliced programs. The white blocks in the upper

part of the figure do not contain instructions that pertain to the slice (they do not belong into 𝑉𝑠 ).

Therefore, they are bypassed by Rule (2) in Definition 3.12. Notice that the Loop condition discussed

in Section 3.3.2 ensures that the slice criterion cannot belong into cycles of data dependencies.

Therefore, Rule (4) in Definition 3.12 always applies.

formal_par(v0)

v2 = phi(v1, v0)
… = v2

v1 = v0 v1 = …

formal_par(v0)

v2 = phi(v1, v0)
… = v2

v1 = v0

v3 = phi(v0, v1, v2)
… = v3

formal_par(v0, v1)

v1 = … v2 = v0

formal_par(v0, v1)

v1 = phi(v0, v3), p0

p0 = (n < v1)
br p0?

n = …

p1 = (v1 % 2)
br p1?

v2 = 1 + v1

v3 = phi(v1, v2), p1

… = v1

v1 = phi(v0, v2)

… = v1v2 = 1 + v1

… = v2

v2 = 1 + v1

… = v2

formal_par(v1)

(a) (b) (c) (d)

v3 = phi(v0, v1, v2)
… = v3

formal_par(v0, v1)

v2 = v0

formal_par(v0, v1)

v1 = phi(v0, v3), p0

p0 = (n < v1)
br p0?

p1 = (v1 % 2)
br p1?

v2 = 1 + v1

v3 = phi(v1, v2), p1

… = v1

n = …

Fig. 7. Four examples of sliced programs produced after Definition 3.12. The arrow shows the slice criterion.
The upper part of each figure shows the blocks of the original program touched by the slice criterion (the
slice is highlighted in gray). The bottom part shows the resulting outlined function.

3.4.2 Memoization. The procedure described in Section 3.4.1 allows us to encapsulate the compu-

tation of a given value into a delegate function. This function, alongside free variables on which

it depends, are enough to synthesize thunks to effectively implement call-by-name semantics.

However, the implementation of call-by-need requires memoization. Memoization guarantees that

the delegate function is executed at most once, even when the thunk itself is evaluated multiple

times. To generate code to carry out memoization, we augment thunks and the generated delegate

function with a cache. For thunks, we add two fields:

• A memoized value, whose type matches the delegate function’s return type.

• A boolean memoization flag.

Example 3.15. Figure 2 (b) shows the two fields that implement the memoization cache in Lines

6 and 7: val and memo.

The delegate function is also modified to take advantage of memoization. We achieve this by

adding two special nodes to its CFG: 𝑏𝑚𝑒𝑚𝑜_𝑒𝑛𝑡𝑟𝑦 and 𝑏𝑚𝑒𝑚𝑜_𝑟𝑒𝑡𝑢𝑟𝑛 . The first replaces 𝑏𝑠𝑡𝑎𝑟𝑡 as the

function’s new entry point. It contains two instructions: a check to determine if the memoization

flag is set, and a conditional test predicated by this check. In case the check is false, 𝑏𝑚𝑒𝑚𝑜_𝑒𝑛𝑡𝑟𝑦

branches to 𝑏𝑠𝑡𝑎𝑟𝑡 , the function’s original entry point. Otherwise, it branches to 𝑏𝑚𝑒𝑚𝑜_𝑟𝑒𝑡𝑢𝑟𝑛 , which
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itself contains a single instruction: a return statement, whose single operand is the memoized value.

Finally, in 𝑏𝑒𝑛𝑑 , the function’s original exit block, we add two instructions immediately preceding

its return statement. One to memoize the value computed by the function in the thunk, and another
to set the thunk’s memoization flag.

Example 3.16. Lines 27-29 of Figure 2 (b) show the conditional block created to check if the thunk
has already been called. Lines 37 and 38 in Figure 2 (b) show the code that sets the memoization

flag, once the thunk is executed for the first time.

3.4.3 Callee cloning. The last step required to lazify a call site is to transform the caller and callee

functions. We start by modifying the call site where the callee is invoked within the caller. The origi-

nal invocation 𝑓 (. . . , 𝑎, . . .) is replaced with a call to a clone of 𝑓 , with signature 𝑓𝑎 (. . . , thunk𝑎, . . .).
Function 𝑓𝑎 is equivalent to 𝑓 , except that every use of 𝑎 is replaced by an invocation of thunk𝑎 . In
the LLVM intermediate representation, the invocation of the thunk involves two instructions: the

first loads the address of the delegate function from thunk𝑎 ; the second calls that function itself.

Example 3.17. In the optimized program shown in Figure 2 (b), the cloned callee function is

shown in line 9, with its original value formal parameter now replaced by a thunk thk. The only
use of value in the original callee from Figure 2 (a) was in the conditional value < N in line 3.

This use is replaced by the invocation thk->fptr(thk) in line 10 of the new function.

Changes in the Caller. The second set of transformations is applied to the caller function. Given

the actual parameter 𝑎 being lazified, we replace the original definition of 𝑎 by the declaration

and initialization of the thunk. We employ the techniques described in Sections 3.4.1 and 3.4.2 to

generate the thunk𝑎 type, consisting of:
• A function pointer, whose signature matches that of the delegate function generated by the

algorithm described in Section 3.4.1.

• A list of member fields, whose types match those of the free variables on which the compu-

tation of 𝑎 depends.

• The memoized value and memoization flag, as described in Section 3.4.2.

The original definition of 𝑎 is replaced by the declaration of a variable thk of type thunk𝑎 . We

add stores to initialize thk’s contents: the function pointer is initialized to the delegate function’s

address; the value of the free variables in scope are copied into their counterparts in the thunk; the
memoization flag is initialized to false. The call 𝑓 (. . . , 𝑎, . . .) is replaced by a call 𝑓𝑎 (. . . , thk, . . .).
Example 3.18 illustrates these interventions.

Example 3.18. Figure 2 (b) shows the thunk initialization code in Lines 17-22. This code replaces

the original definition of value in Line 9 of Figure 2 (a).

Further uses of 𝑎 in the caller (other than in the modified call site) are also replaced by a call

to thk’s delegate function pointer. Replacing the uses of 𝑎 in the caller function is not necessary

for correctness: the existing computation of 𝑎 and its other uses could be kept as-is. However,

this substitution avoids redundancy. If the original computations were kept, then the gains of

lazification would be lost. Thus, reusing the thunk throughout the caller guarantees that the code

encapsulated in the delegate function runs at most once.

3.5 Identification of Profitability
As mentioned in Section 3.2, our static analysis provides a conservative estimate on the profitability

of lazifying a given function call. If the static promising paths in the callee are seldom exercised

during execution, lazification will simply add extra work while rarely avoiding redundancies. In

such cases, lazification is likely to lead to performance degradation, as Example 3.19 demonstrates.
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Example 3.19. In the lazified program shown in Figure 2 (b), the promising path occurs when

the check key != 0 in line 10 is false. Whether this is the case depends on the contents of the

input string s0. For an input of ten thousand strings, 99,9% of which cause key != 0 to be true,

and N = 10
6
, this program runs in 21.4 seconds on a single-core x86 machine clocked at 2.2GHz. Its

non-optimized counterpart, shown in Figure 2 (a), runs in 11.7 seconds, nearly twice as fast. This

difference increases with the size of N.

To avoid the scenario described in Example 3.19, we resort to profile-guided optimization. The

instrumentation-based profiler augments the input program to record data on the dynamic uses

of formal parameters for each function call. Following the usual practice, the target program is

profiled with a set of training inputs. The program is then compiled a second time, and the available

profiling data is used to decide when to apply call-by-need for a given call site. Notice that only

promising functions (see Def. 3.2) are instrumented. Thus, given a promising function 𝑓 , for each

call 𝑓𝑖 (𝑎1, 𝑎2, . . . , 𝑎 𝑗 ), we keep track of two statistics:

• num_calls𝑖 : the number of times the function call is executed.

• eval_count [ 𝑗] : for each real parameter 𝑎 𝑗 , the number of times it was evaluated at least

once for each call 𝑓𝑖 .

Instrumentation adds code to track these data on two fronts. (i) For every call site in the program,

we add a call to an auxiliary function immediately preceding it, which tags it as the active call site.

This tagging is also used to uniquely identify call sites, so we can map them back to the LLVM IR.

(ii) For every promising function, we add:

• To its 𝑏𝑠𝑡𝑎𝑟𝑡 entry node, an initialization of a bitmap bits[ 𝑗] which tracks whether each of

its 𝑗 formal parameters were used at least once during that execution

• For each 𝑏𝑖 node containing a use of a formal parameter 𝑎𝑖 , an instruction to set the 𝑖 − 𝑡ℎ

bit of 𝑏𝑖𝑡𝑠 []
• To its 𝑏𝑒𝑛𝑑 exit node, an auxiliary function to increment 𝑛𝑢𝑚_𝑐𝑎𝑙𝑙𝑠𝑖 , as well as every

eval_count 𝑗 whose 𝑏𝑖𝑡𝑠 [ 𝑗] is set
Given a profiled program, our instrumentation allows us to compute, for each call site, the usage

ratio of each of its real parameters. The usage ratio of a parameter 𝑎 𝑗 in a call 𝑓𝑖 (. . . , 𝑎 𝑗 , . . .) is simply

𝑒𝑣𝑎𝑙_𝑐𝑜𝑢𝑛𝑡 [ 𝑗 ]
𝑛𝑢𝑚_𝑐𝑎𝑙𝑙𝑠𝑖

. The profile-guided version of the optimization is parameterized with a threshold value.

When evaluating whether to lazify a call site, only parameters whose usage ratio is below the given

threshold are lazified.

4 EVALUATION
The goal of this section is to answer the following research question:

RQ1 How prevalent are function calls where at least one actual parameter could be lazified?

RQ2 How much speedup can be obtained by our implementation of lazification?

RQ3 How does our implementation of lazification impact the size of optimized code?

Experimental Setup: Experiments were executed on a dedicated server featuring an Intel Xeon

E5-2620 CPU at 2.00GHz, with 16GB RAM, running Linux Ubuntu 18.04, with kernel version

4.15.0-123. The baseline compiler used to test our optimization was clang 14.
Benchmarks: The evaluation presented in this section uses benchmarks from the LLVM test-

suite plus SPEC CPU2017. The LLVM test-suite contains 754 executable programs, including

microbenchmarks. SPEC CPU2017 contains 43 programs, but only 27 are written in C or C++, and

only 18 of them could be plugged into the LLVM test suite. The experiments in Section 4.1 use the

27 programs from SPEC CPU2017. The experiments in Section 4.2 (and consequently those from

Sec. 4.3) must run in the LLVM test-suite, for they require two inputs, one for profiling and another
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for validation. These experiments use 772 programs (18 from SPEC CPU2017). We use the “train"

input for profiling, and the “reference" for validation. Notice that most of the benchmarks in the

LLVM test-suite are small code snippets that offer no opportunity for lazification. In total, 111 of

our benchmarks contain promising functions (see Definition 3.2).

Measurement Methodology: Running time numbers reported in this section are the average

of 20 executions. We adopt a confidence level of 95%; thus, we consider as statistically significant

only differences in running time with a p-value under 0.05. We use Student’s T-Test to determine

whether the mean running times of two populations of executions are statistically different.

4.1 RQ1 - Prevalence
Our technique applies to promising functions, as formalized inDefinition 3.2. However, asmentioned

in Section 3.2, the existence of paths in the function’s CFG that do not use all its formal parameters

does not guarantee that lazification is profitable. Profitability would require these paths to be

traversed in practice. This section measures empirically how often such paths are traversed.

Methodology: We run a dynamic analysis on the C/C++ programs in SPEC CPU2017, using an

LLVM pass to instrument the usage of formal arguments. The benchmarks were invoked with their

“reference" inputs. Instrumentation collects occurrences of function calls whose arguments were

not used before returning. In this experiment, we mark as “optimizable" the functions that contain

at least one formal parameter without recorded uses. We performed two separate experiments, each

employing a different criteria to choose which functions to instrument:

All: In the first scenario, we instrumented every function in all binaries; hence, recording

usage data for all function calls.

Promising: We restricted instrumentation to the promising functions formalized by Def. 3.2.
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Fig. 8. Percentage of function calls with unused arguments, when tracking all functions.
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Discussion: Figure 8 shows the result of the experiment for the scenario where all functions were

instrumented. While there were a few programs with a significant percentage of optimizable calls,

such as bzip2 with 74% and h264ref with 77%, most programs have a low number of such calls.

Additionally, most of the programs with high ratios of optimizable functions had fewer function

calls in general. For instance, leela_r and xalancbmk_r, the only two programs with over 7 billion

function calls, both had less than 30% of optimizable calls. Therefore, in relation to all function calls

performed during execution, the prevalence of optimization opportunities is relatively low.
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Fig. 9. Percentage of function calls with unused arguments, when tracking promising functions.

The aforementioned result was not surprising. Given the specificity of the pattern we target, we

expected occurrences of it to be rare. However, if we restrict this analysis to promising functions,

then we obtain a higher rate of optimizable functions. Figure 9 shows the result of this experiment.

While the number of total calls drops significantly, there is still a non-negligible number of calls

involving only promising functions. Additionally, a considerable amount of programs, including

xalancbmk_r, which contains the most calls, have a ratio of over 50% of optimizable calls. There-

fore, when analyzing contexts where the technique could be applied, we find that optimization

opportunities are in fact significantly prevalent.

4.2 RQ2 - Running Time
This section measures the impact of lazification on the running time of programs, using, to this

end, clang -O3 as the baseline.
Methodology:We applied Lazification to all the programs in the LLVM test-suite, augmented

with the C/C++ programs from the SPEC CPU2017 that have ports in the test-suite. We have

evaluated three distinct setups for the optimization:
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Naïve: we lazify every call site where a promising function is invoked, without any dynamic

execution data.

PGO-0.4: we employ profiling as described in Section 3.5, optimizing only call sites whose

parameter usage ratio is below 40%.

PGO-0.1: this is the same setup as PGO-0.4, but optimizing only call sites with a parameter

usage ratio below 10%.

The last two setups, which involve profiling, use the “train" input of each benchmark to collect

data, and the “reference" input to run the optimized code. Figures 10, 11 and 12 report running-time

variations measured as

𝑟𝑢𝑛𝑡𝑖𝑚𝑒𝑜𝑟𝑖𝑔

𝑟𝑢𝑛𝑡𝑖𝑚𝑒𝑜𝑝𝑡
. Thus, values above 1.0 represent speedups and values below 1.0

are slowdowns. runtime𝑜𝑟𝑖𝑔 is the running time of binaries built with clang 14, at the maximum

optimization level (-O3). Speedup charts are presented in logarithmic scale. Programs from the

LLVM test-suite are shown as square points. Programs from SPEC CPU2017 are shown as triangles,

with labels indicating name and running-time variation.
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Fig. 10. Running time variation due to the naïve lazification, i.e., without the support of profiling data.

The Naïve Setup. Figure 10 shows the speedup for programs optimized using the naïve setup. In

total, the optimization was applied to 111 programs. However, only 32 of them showed a statistically

significant difference to the baseline; hence, we only show results for these. Speedups ranging

from 1.11x for bison to 1.007x for lua were observed in four programs. No speedup could be

measured in programs from SPEC CPU2017. Yet, the most dramatic slowdowns occurred for smaller

benchmarks, as can be seen in the tail end of Figure 10. The biggest slowdown of 0.337x was

observed in simple_types_loop_invariant, whose baseline runs for 1.5 seconds. Overall, naïve
lazification incurs a geomean speedup of 0.909x, meaning that it slows programs down. This result

is expected, as it does not use any form of profiling information. As seen in Section 4.1, most

programs tend to have a low rate of function calls with unused arguments, even considering only

promising functions. Therefore, unguided lazification tends to optimize many calls that cause

regressions rather than benefits.
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Fig. 11. Running time variation due to profiling-guided lazification, with a usage ratio of 0.4.

The PGO 4.0 Setup. Figure 11 shows the result of applying lazification with the PGO-0.4 setup. In

total, 54 programs were optimized—less than half of the 111 optimized by the naïve setup. Thus,

profile data increases the optimization’s parsimony significantly. From these 54 programs, only 13

showedmean runtimeswhich differed statistically from the baseline. Eight programs show speedups,

while five had slowdowns. Notably, SPECCPU2017’s Xalan-C, which performedworse than baseline

in the previous experiment, now improves over baseline with a speedup of 1.012x. Similarly, the

simple_types_loop_invariant benchmark, while still showing the largest slowdown, improved

from 0.337x to 0.828x. Overall, when parameterized with a usage ratio threshold of 40%, lazification

incurs a geomean speedup of 1.002x.

The PGO 1.0 Setup. Figure 12 shows the speedup results when optimizing with the PGO-0.1 setup.

For this experiment, only six programs showed a statistically significant difference in runtime versus

the baseline. Programs were evenly split with half being under baseline and half above baseline.

Overall, lazification with a 10% usage ratio provides a geomean speedup of 1.011x. Although small

on average, when restricted to individual benchmarks, more noticeable boosts in performance

can be observed. Amongst the programs which show speedups, there is a notable improvement

of 1.045x for SPECrate’s perlbench, the longest running benchmark in this suite. We emphasize

that such speedup was obtained against clang at its highest optimization level. At this level, clang
applies 278 passes onto the target program.

4.3 RQ3 - Code Expansion
This section measures the impact of lazification on the final size of binary programs. Our baseline

in this evaluation is also clang -O3, and we use the same three setups presented in Section 4.2.

Methodology:We measured the size, in bytes, of the .text section of the optimized binaries

used in Section 4.2, and compared them against their baseline counterparts. We compute code bloat

as

size𝑜𝑝𝑡
size𝑜𝑟𝑖𝑔

, where size𝑜𝑟𝑖𝑔 is the size of the .text section of the binary generated by clang 14 at its

highest optimization level (-O3). Figure 13 shows the result of this experiment. The vertical axis
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Fig. 12. Running time variation due to profiling-guided lazification, with a usage ratio of 0.1.

shows code bloat in logarithmic scale. Programs are sorted by the original binary’s size, in bytes,

plotted also in logarithmic scale in the horizontal axis.

Discussion.Our implementation of lazification leads to code expansion in the three different setups

that we consider. The most aggressive setup, naïve naturally experiments the largest increase: on

average, when considering the 111 benchmarks where our optimization finds service, we observe

an expansion of 18.9% on top of clang -O3: we jump from 28.19 to 30.85 million LLVM instructions.

If profiling data is used to restrict the scope of the optimization, the code expansion decreases,

albeit remaining noticeable. The average expansion in the pgo-4.0 setup is 11.6%, whereas in the

pgo-1.0 setup it is of 9.2%.

5 RELATEDWORK
We are not aware of a code transformation technique that replaces the computation of actual

parameters with closures that will be evaluated lazily. Nevertheless, the compiler-related literature

abounds with examples of code motion that extrapolate the boundaries of functions. In this section,

we go over four such techniques. Figure 14 shall provide a visual guide to such techniques.

Partial Redundancy Elimination. We call partially redundant code computation that might execute

two or more times, depending on the program flow. Many classic compiler-related papers discuss

the implementation of partial redundancy elimination [Chow et al. 1997; Kennedy et al. 1999; Knoop

et al. 1992]. Lazification bears a few similarities with these approaches. In particular, like Knoop et al.

[1992], we strive to meet performance safety within the unexercised path. In other words, we do not

introduce useless computation in the program. However, we assume the existence of a limited set

of program points where computation can happen. In our case, code can only execute at the points

where formal parameters are accessed in the optimized function call. The traditional approach

to partial code motion, in turn, uses two data-flow analyses—available expressions and busy

expressions—to determine where to move redundant code. These analyses run intra-procedurally:

they do not require a program slicing algorithm, as they do not create closures containing redundant
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Fig. 13. Binary-size overhead of lazification, considering the three setups discussed in Section 4.2. X-axes
show code size, in bytes, in log scale, ordered from smallest to largest binaries.

computations. We emphasize that contrary to Knoop et al. and other works on intra-procedural

redundancy elimination, we incur a higher cost on the exercised path: the thunk containing the

lazy expression must be loaded with arguments and invoked, whenever it becomes active.

Interprocedural Partial Redundancy Elimination. The notion of partial redundancy elimination

has been extended to an interprocedural analysis by Agrawal et al. [1995]. Further developments

of Agrawal et al.’s ideas have been used in the generation of communication routines during

the automatic parallelization of programs [Jang et al. 2012; Rabbah and Palem 2003; Ren and

Agrawal 2011]. The ideas of Agrawal et al. are very similar to those earlier proposed by Knoop et al.

[1992]; however, Agrawal et al. propagate flow information outside the boundaries of functions.

Additionally, they let code be moved out of the function where it was originally located; hence,

effectively making lazy code motion an interprocedural optimization. In many ways, Agrawal

et al.’s approach seems to doing the opposite of what we propose in this paper. Whereas we want

to move computation from outside a procedure to inside it, Agrawal et al. is performing the inverse

path: they extract expressions from a routine, and let them execute before this routine is called.

Notice that this extraction process does not lead to the creation of new functions—they are not

doing function outlining. Instead, expressions are extracted and moved as is, except that program
symbols are renamed whenever necessary.
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01
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a = exp();
if (b) {
  c = a;
} else {
  …
}

01
02
03
04
05
06

if (b) {
  a = exp();
  c = a;
} else {
  …
}

01
02
03
04
05
06
07
08
09
10
11

f() {
  while(a) {
    g(a);
    update(a);
  }
}

g() {
  exp();
  use(a);
}

01
02
03
04
05
06
07
08
09
10
11

f() {
  exp();
  while(a) {
    g(a);
    update(a);
  }
}

g() {
  use(a);
}

01
02
03
04
05
06

a = eager_exp();
b = eager_exp();
c = eager_exp(a, b);
update(a);
d = eager_exp(c);
print(d);

a = lazy_exp();
b = lazy_exp();
c = lazy_exp(a, b);
eval(c);
update(a);
d = lazy_exp();
eval(d);
print(d);
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07
08

01
02
03
04
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06
07
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09

g(x, y) {
  if (x == 0) {
    return y;
  } else {
    return g(x-1, y)
  }
}

g(1000, lazy_exp())

g(x, y) {
  if (x == 0) {
    return y;
  } else {
    return g(x-1, y)
  }
}

g(1000, eager_exp())

01
02
03
04
05
06
07
08
09

(a) Partial redundancy elimination (b) Interprocedural Partial redundancy elimination

(c) Stricness analysis and optimization (d) API-level lazification

Fig. 14. Examples of transformations produced by different code-motion techniques. For each example, the
figure shows the original program on the left side, and the optimized program on the right side.

Strictness Analysis. In the late eighties, different research groups invented techniques to transform
lazy evaluation of actual parameters into eager evaluation [Burn et al. 1986; Clack and Peyton Jones

1985; Kuo and Mishra 1987; Wadler 1988]. These transformations rely on a data-flow analysis

presented by Mycroft [1981] in his Ph.D thesis, which became later known as strictness analysis.
In the words of Burn et al. [1986]: “Mycroft shows that by annotating functions with strictness

information, it is possible to optimise functional program execution by using eager evaluation tech-

niques wherever this can be done without violating the lazy semantics". This type of “strictification"

is the opposite of what we propose in this paper. The goal of this paper is to lazify the computation

of actual parameters that otherwise would be evaluated eagerly. Mycroft-style strictification, in

turn, aims at making strict the evaluation of arguments that, otherwise, would be processed lazily.

API-level Lazification. Recently, Zhang and Shen [2021] have released Cunctator, a framework

to replace some library calls, in Python, by equivalent calls that are lazily evaluated. For instance,

Cunctator can replace calls to NumPy routines with equivalent structures from WeldNumPy, or re-
place panda’s dataframes with spark dataframes with the same interface. In many ways, Cunctator
moves from the programmer the burden of choosing lazy data-structures whenever such choice is

profitable. Similar ideas can be found in a few domain-specific languages, such as Weld [Palkar et al.
2018] or Delite [Sujeeth et al. 2014]. We emphasize that this line of work is very different from

what we propose in this paper. Zhang and Shen’s analysis is dynamic: the profitability of lazification

is measured at running time; our work, in turn, is fully static. Second, Zhang and Shen’s (and also

Palkar et al. and Sujeeth et al.’s) approach is applied at a higher-level than what we do: they replace

APIs, e.g., one function call with another of similar purpose. Therefore, transformations such as

slicing or gating are of no service in their case.
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Program Slicing. Program slicing is a core component of this work. We believe that the original

treatment of this topic appears in the work of Weiser [1984]. A number of classic surveys constitute

today the canonical literature on the subject [Binkley and Gallagher 1996; Tip 1994; Xu et al. 2005].

More recently, Silva [2012] have summarized most of the new slicing algorithms published after

the 2000’s. The key technique to identify a program slice, given a slice criterion, is already present

in Weiser’s seminal work. Yet, we found it surprisingly difficult to derive an algorithm to extract

closures from program slices performed on a program in Static-Single Assignment form. Our

difficulties stemmed from two observations. First, much work on program slicing does not aim at

producing executable codes; rather, they are used for debugging—a goal that finds in the notion of

thin slicing [Sridharan et al. 2007] its most well-known representative. Second, the classic definition

of program slice considers statements, not variable uses, as slice criteria. As a consequence, control

dependencies surrounding these statements end up incorporated into the program slice. Example 5.1

illustrates how this notion of program slice differs from the concept that we use in this paper.

Example 5.1. The classic definitions of program slicing [Binkley and Gallagher 1996; Tip 1994;

Xu et al. 2005], including the more modern treatment found in the work of Silva [2012], would

not consider the use of variable x in Figure 4 (a) as a slice criterion. Rather, they would consider

as a slice criterion the instruction at Line 12, e.g., r = bar(x). In this case, the slice contains the

conditional at Line 11, plus the switch at Line 09 of Figure 4 (a). None of these lines are part of the

slice that we create, as Figure 4 (d) shows.

The difference between our work and previous techniques, which Example 5.1 illustrates, persists

even in recent work that performs program slicing in the context of the LLVM compiler, using

SSA-form programs [Zhang 2021]. Thus, we believe that the declarative algorithm in Definition 3.12,

plus the use of gating predicates, as stated in Definition 3.7, are contributions of this paper. We

emphasize that this combination of techniques works for the construction of idempotent slices.

6 CONCLUSION
This paper has introduced a compiler optimization that replaces eager evaluation of formal pa-

rameters with lazy evaluation, whenever such transformation is deemed profitable. The code

transformation that this paper discusses is a form of aggressive speculation: under the right circum-

stances, which a profiler can identify, it can improve even highly optimized binaries. As an example,

we have been able to observe a statistically significant speedup of almost 5% over clang -O3

when running an optimized version of perlbench, one of the largest programs in SPEC CPU2017.

Speedups above 10% on smaller programs from the LLVM test suite could also be measured.

We have tested our ideas in an imperative setting: a collection of programs written in C or C++,

and compiled with clang. In hindsight, one of the core challenges that we have faced was the

difficulty to identify and avoid code with side effects. This difficulty has forced us to settle for a

rather conservative analysis to mark “lazifiable" expressions. We believe that our lazification of

function arguments could find more service in the context of a functional programming language

that uses strict evaluation by default, such as Elixir, Idris, F# or ML. Nevertheless, the verification

of this hypothesis is a challenge that we leave to the functional programming enthusiasts.
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